

Mastering Software Quality Assurance
By Murali Chemuturi
Table J.6: Checklist for code review

	Item No.
	Item
	Yes / No

	1
	Has the coding guideline specified in the project plan been adhered to?
	

	2
	Is inline documentation adequate?
	

	3
	Do naming conventions conform to the configuration management plan?
	

	4
	Has code been properly formatted?
	

	5
	Has a common set of routines been written without duplicating these routines in different programs?
	

	6
	Is there any redundant or trash code?
	

	7
	Has any label not been referenced?
	

	8
	Have pointers been set to NULL if necessary?
	

	9
	Does pointer-arithmetic result in pointing to memory that is out of range?
	

	10
	Are all the array indices within bounds?
	

	11
	Are all the array indices correctly initialized?
	

	12
	Are all the branch conditions correct?
	

	13
	Do all loops terminate?
	

	14
	Is the condition for terminating a loop realistic?
	

	15
	Have the denominators in division operation been checked for zero before performing the division?
	

	16
	Can any statements placed inside the loop be placed outside the loop?
	

	17
	Are there any portions in the code that the thread of execution never reaches?
	

	18
	Are “if” statements nested to more than three levels?
	

	19
	Do the actual and formal interface parameters match?
	

	20
	Are there any unused variables declared?
	

	21
	Has the memory been correctly initialized?
	

	22
	Has dynamic memory that has been allocated on entry been released at all exit points?
	

	23
	Do queries on tables enforce the use of indices?
	

	24
	Is error status checked after each structured query language statement?
	

	25
	Is locking performed prior to updates where necessary?
	

	26
	Have the following conditions been checked in expressions?
1. Rounding off
2. Possibility of division by zero
	

	27
	Will the requirements of response time be met?
	

	28
	Is there a better alternative for improving the response times?
	

	29
	Have the following checks been performed?
1. Checks for empty table and file
2. Checks for IO error
	

	30
	Are the error messages clear? Are the error messages adequate?
	

	31
	Have all error conditions been trapped and handled?
	

	32
	In arithmetic expressions, have the following been addressed?
1. Is the order of processing unambiguous?
2. Is there any need for horizontal scrolling to read the entire expression?
3. Are all parentheses properly closed? Do they ensure proper order of processing?
4. Is rounding off performed along with the expression?
5. Is division clubbed with another expression?
6. Does any expression use table fields or file fields directly in the expression?
	

	33
	In relational expressions, have the following been addressed?
1. Are the comparisons between the same types of data?
2. Is it possible to have more than two outcomes for any expression?
3. Does the expression serve the purpose for which it is used?
4. Is there any need for horizontal scrolling to read the entire expression?
	

	34
	In logical expressions, have the following been addressed?
1. Does the logical expression serve the purpose for which it is used?
2. Is each relational expression used result in a true or false outcome?
3. Is each relational expression inside a set of parentheses?
4. Is it ensured that at any given time, only two relational expressions are compared?
5. Is there any need for horizontal scrolling to read the entire expression?
	

	35
	In file and table operations, have the following been addressed?
1. Are any files or tables opened much sooner than they are required?
2. Are any files or tables left open when the operations are completed?
	

	36
	In variable declarations, have the following been addressed?
1. Do all the variables declared as global or static really need to be global or static?
2. Are there any declarations of unnecessary variables?
3. Would any variable name conflict with the key word of the programming language being used?
4. Is there any hard-coding inside the code?
	

J. Ross Publishing WAV™ material 	1 of 2
