Mastering Software Quality Assurance
By Murali Chemuturi


Table C.1: Guidelines for error guessing 
	Error Case
	Description of Example Test Cases
	Remarks

	Programming shortfalls
	These are programmer oversights, such as not handling all possible data validations.
	Use negative testing guidelines to detect these errors.

	Wrong sequence of operations
	1. For example, in a warehouse application, material should be received before it can be issued. 

2. The employee’s age must be in the “employable” range when he or she joins the organization.

3. In a production management application, fabrication must be completed before it can be inspected.

4. In a time sheet application, one should not be able to enter data for a future date.
	Design test cases to ensure that operations are permitted in the proper sequence only.

	Integrity issues
	1. After an invoice is submitted to a customer, modification of the invoice should not be allowed.

2. After a purchase order has been placed, modification of its contents should not be allowed.

3. After time sheet data is submitted to payroll or billed to the customer, changes to include more data should not be permitted.

4. After a balance sheet has been produced, modification to the data pertaining to the period of the balance sheet should not be allowed.
	Design test cases to ensure that ensure integrity of data.

	Consistency issues—Key values should not be deleted after some transactions have taken place.
	1. Project information should not be deleted after data against that project has been entered in a time sheet application.

2. In a warehouse application, reduction in the quantity of receipts should not be allowed after that quantity has been issued.

3. In a finance application, an account head should not be deleted or modified after an amount of income or expenditure has been booked against that account head.
	Design test cases to ensure that data consistency is ensured.

	Consistency of information presented. Many times, the same information is retrieved, called up either to the screen or to the report. In all instances, the information must be same.
	1. In a warehouse application, stock information for an item is obtained from multiple places, such as before issue of the item, in the stock report, in the stock enquiry by the production team, and so on. At all places, the value must be same.

2. In an enterprise resource planning application, the value of production from the finance, production, or marketing module can be obtained. The value must be same.

3. In a customer relationship management application, a request for proposal is a prerequisite for proposal and a proposal for an order.

4. When a report is generated after processing a number of records, the sum of the records included in the report and excluded from the report must equal the number of records that are in the database.
	Design test cases to ensure that the application presents consistent information irrespective of the source from which it is obtained.


	Computational issues
	1. Many times when maximum values are input for performing multiplications, the receiving variable might not have adequate size to accommodate the result.

2. Many times when the denominator in a division operation becomes zero, the “division by zero” error is not handled in the software.
	Design test cases to ensure that results given by computations are properly stored.

	Loops
	1. Many times loops go into infinite iterations.

2. Many times the file or table record reading in a loop may not read all records until the end-of-file condition is reached.
	Design test cases to ensure that loops iterate for all the designed iterations and that they do terminate.

	Control structures
	1. It is common to forget to include the “else” part of “if” statements.

2. It is also common to forget the “default” case in “switch-case” statements.
	Design test cases to ensure all paths of a control structure.



J. Ross Publishing WAV™ material 	1 of 2 
